Wireguard

Ein VPN mit Wireguard werden oftmals unter Zuhilfenahme von wg-quick
aufgebaut, die Verwendung eigene Scripts kann dennoch sinnvoller sein.

1) VPN Betriebs-Modus

Ein VPN kann sowohl als VPN wie als Full-VPN konfiguriert werden.

* VPN bedeutet, dass nur der Netzverkehr zur Gegenstelle oder im Netz der Gegenstelle
Uber den Tunnel lauft.

* Full-VPN bedeutet, dass den gesamten Netzwerk-Verkehr durch den Tunnel geleitet
wird.

1.1) Problematik

* Die Betriebsmodus (VPN oder Full-VPN) bedurfen getrennte Konfigurationsdateien.
* Full-VPN geht nicht ganz wie erwlinscht.
o Falls die IPv4-Adressen des Heim-LANs mit de des Gast-Netzes kollidieren und die
Verbindung zum VPN Uber IPv4 geschieht, kann es zu Stérungen kommen.
o Die von wg-quick eingefiigte Routen sorgen bestimmt, dass die Daten vom
Tunnel nicht zum eigentliche Empfanger geleitet werden.

2) Routing unter Linux

Neuere Linux Distributionen verwenden das NetworkManager um IP-Adressen
und Route festzulegen (auf ein Raspberry wird zurzeit dhcpcd verwendet).

Ein saubere Routing setz eine Bevorzugung der eine oder andere Netzwerk-Schnittstelle
voraus.

Das Zauberwort heilRt metric:

$ ip route show

default via 10.0.0.1 dev eth® proto dhcp metric 600
10.0.0.0/24 dev ethO® ... metric 100

10.0.0.0/24 dev wlan@ ... metric 600

10.0.0.0/24 dev wg0

Der Eintrag metric 100 bei der Schnittstelle ethO hat ein geringerer Wert als die der
Schnittstelle wlan0 und wird bevorzugt. Eine Funkverbindung fugt Verzégerungen, diese
bewirken sich negativ auf der Ubertragungsrate, deswegen wird eine hohere metric der
Route Uber das Gerat wlanO0, hier, vom NetworkManager zugewiesen.

In der 5. Zeile sehen wir ein Eintrag ohne metric, es ist gleichbedeutend mit metric 0. Mit
das Kommando route ist es ersichtlich

Wireguard Seite 1 von 17

$ route
Kernel IP Routentabelle

Ziel Router Genmask Flags Metric Ref Use Iface
default 10.0.0.1 255.255.255.255 U 100 0 0 etho
10.0.0.0 0.0.0.0 255.255.255.0 U 100 0 0 etho
10.0.0.0 0.0.0.0 255.255.255.0 U 600 0 0 wlan@
10.0.0.0 0.0.0.0 255.255.255.0 U 0 0 0 wg0

Netzwerkzugriffe auf beispielsweise 10.0.0.2 wirden, hier der Weg tUber wg0 nehmen.

Schlimmer ist, dass der Zugriff zur Adresse unseren VPN-Endpunkt nicht der Weg Uber eth0
nehmen kann! (FUII-VPN Betrieb).

2.1) Routing und Spezialitat

$ ip route show

default via 10.0.0.1 dev eth® proto dhcp
10.1.1.0/24 via 10.1.1.1 dev wlan0@
10.0.0.1/32 via 10.1.1.1 dev wlan0@

In diesem Fall ist die Route zu 10.0.0.1 Uber die Netzwerk-Schnittstelle wlan0 genauer
spezifiziert und wird als ersten beachtet.

Netzwerk Pakete die an Adressen im Bereich 10.1.1.0/24 gerichtet werden nehmen den Weg
Uber wlan0. 10.1.1.0/24 ist spezifischer als 0.0.0.0/0 (default).

2.2) Verhalten bei IPv4 und IPv6 im Full-VPN Modus -
Konfiguration

[Interface] # client

PrivateKey = W...=

Address = 10.18.1.2/32, fd0l:cafe::2/128

DNS = 192.168.178.1 fritz.box 178.168.192.in-addr.arpa
MTU=1420

Table = auto

[Peer] # Server

PublicKey = 7...=
AllowedIPs = 198.18.1.0/24, 192.168.178.0/24, fdOl:cafe::/64, 0.0.0.0/0, ::/0
EndPoint = 192.0.2.12

Zeile 3 definiert die Adressen der Wireguard Netzwerkschnittstelle.

Zeile 4 sorgt dafur, dass der DNS-Server (in dem Fall eine Fritz!Box) im Heim-LAN immer
konsultiert wird.

Die Zeile Table = auto ist hier Uberflissig, wenn es auf off gestellt wird, wird keine
zusatzliche Routingtabelle erstellt

Zeile 10 sorgt dafur, dass auf der Client Routen entsprechend gesetzt werden.

0.0.0.0/0 und ::/0 stellen sicher (oder sollten es bei IPv6), dass der Verkehr zur Wireguard
Netzwerkschnittstelle geleitet werden.

Wireguard Seite 2 von 17

2.3) Route auf der Client

$ ip route

default via 10.0.0.1 dev clan@ proto dhcp metric 600

10.0.0.0/24 dev tun® scope link

10.0.0.0/24 dev wlanO proto kernel scope link src 10.0.0.3 metric 600
10.18.1.0/24 dev tun0® scope link

So ist nicht ersichtlich dass die default Route durch eine andere erganzt wurde.

ip -4 route show table all

default dev tun@ table 51820 scope link

default via 10.0.0.1 dev wlan® proto dhcp metric 600

10.0.0.0/24 dev tun® scope link

10.0.0.0/24 dev tun@® proto kernel scope link src 10.0.0.3 metric 600
10.18.1.0/24 dev test scope link

Hier offenbart was geschieht. Eine Routing Tabelle mit ID 51820 wurde angelegt, dort steht
eine default Route, die héherprior ist als die in Zeile 3.

3) Client

Wer lesen kann ist im Vorteil.

In dem Fall werden Manual Seiten und ein wenig Scripts.

3.1) Wireguard Tunnel erzeugen

ip tunnel add dev tun0® type wireguard

wg das Verwaltung Programm (Kommunikation zur Wireguard) kann erst dann aufgerufen
werden, wenn eine passenden Schnittstelle vorhanden ist.

3.2) wg starten

wg up tun® wg-client.conf
Uber der Konfigurationsdatei wg-client.conf wird der Kernel parametriert.
3.3) Beispiel einer Konfigurationsdatei

[Interface]l # mobile Gerat
PrivateKey = W...=

[Peer] # Server

Publickey = 7...=
AllowedIPs = 0.0.0.0/0, ::/0
EndPoint = 192.0.2.21:51820

PersistentKeepAlive = 25

Der Rest kann Uber Script konfiguriert werden. Die Zuweisung EndPoint = 192.0.2.21:51820
kénnte auch in unseren Script statt finden.

Wireguard Seite 3 von 17

3.4) Tunnel einschalten, IP Adresse und Route Setzen

ip link set mtu 1480 up dev tun@
ip address add 10.0.0.2/24 dev tun0

In Zeile 1 wird Die Schnittstelle parametriert und hochgefahren.
mtu 1480 gibt an wie groR die einzelnen Netzwerkpakete sein durfen. Wireguard bendtigt
selbst Platz in jedes Paket, dies vermindert die zulassige “mtu”.

Die 2. Zeile liegt die IPv4 Adresse der Schnittstelle und auch eine Route.
/24 besagt, dass Pakete zum Ziel 10.0.0.0 bis 10.0.0.255 Uber tun0 geleitet werden.

3.5) Route zum Heim LAN setzen

ip route add 192.168.178.0/24 via 10.0.0.2 dev tun0®

Rechner in unseren Heim-LAN haben alle eine Adresse im Bereich 192.168.178.0/24. Wir
kénnen hiermit jedes Gerat gezielt ansprechen.

Wenn die Gastgeberin ebenfalls eine Fritz!Box betreibt, gibt es Kollisionen. Spater mehr
dazu.

3.6) DNS konfigurieren

echo nameserver 192.168.178.1 | resolvconf -a tun®@ -m 0@ -x
DEV=$(ip route get 1.1.1.1 | awk '{print $5;exit}")
resolvectl default-route $DEV false

resolvectl domain tun@ friz.box 178.168.192.in-addr.arpa

DNS-Anfrage werden vorzugsweise Uber tun0O gesendet, damit kdnnen wir die Systeme im
Heim-LAN per Name ansprechen. die entsprechenden DNS Anfragen werden von unseren
eigenen Nameserver bedient.

Da wir Uber WIFI oder per Kabel mit das Netz der Gastgeberin verbunden sein kdnnen, wird
in Zeile 2 Gber welche Schnittstelle eine 6ffentliche Adresse erreicht wird. Danach werden die
Anfragen flr die Domane Fritz!Box und fir unseren heimischen IP-Bereich den Weg Uber
unseren Tunnel verwiesen (Zeile 4).

Die Anweisungen in Zeile 2 und 3 kénnen schlecht mit wg-quick implementiert werden.

Wireguard Seite 4 von 17

3.7) Client Script Konfigurationsdatei

WG=tun0
CNF=/etc/wireguard/tun@.conf

N=2

IP4=10.18.1.%N

IP6=fdOl:cafe::$N

DNS=192.168.178.1

DOMAIN="fritz.box 178.168.192.in-addr-arpa"
MTU=1420

IPR=192.168.178.0/24

EP4=192.0.2.22

EP6=2001:db8::123

URL=

PORT=51820

Falls mehrere Systeme im VPN eingebunden werden, reich es aus die Variable N zu setzen.
Die ubrige Variable kdnnen wir spater im Startscript verwenden.

3.8) Client Script

#!/bin/sh
source /etc/wireguard/tun@.var
getDevViaDrt() {

VIA=$(ip route get 1.1.1.1 | awk '{print $3;exit}"')
DEV=$(ip route get 1.1.1.1 | awk '{print $5;exit}")
DRT=$(ip route | grep 'default' | awk '{print $1;exit}"')

}
case $1 in
up)
getDevViaDrt
ip link add dev $WG type wireguard
wg setconf $WG $CNF
ip link set mtu $MTU up dev $WG
ip address add $IP4/24 dev $WG
ip route add $IPRN via $IP4 dev $WG
ip route add $EP4 via $VIA dev $DEV

echo nameserver $DNS | resolvconf -a $WG -m O -

resolvectl default-route $DEV false
resolvectl domain $WG $DOMAIN
resolvectl default-route $WG

down)
ip link del dev $WG
getDevViaDrt
ip route del $EP4 via $VIA dev $DEV
resolvectl default-route $DEV true

esac

In Zeile 3 sorgt Funktion getDevVia(), dass wir erfahren wie die Pakete ins Netzwerk

gesendet werden (Aufruf Zeile 9).

Wireguard

Seite 5 von 17

EP4 ist die IPv4 Adresse vom Tunnel Endpunkt. Ws muss sichergestellt werden, dass der
Netzwerkverkehr zum Endpunkt nicht fehlgeleitet wird. Dies erfolgt in Zeile 16.

AnschlieSend wir das DNS konfiguriert

Zeile 24 entfernt die VPN Schnittstelle und auch vorhergehende Anweisungen, die sich auf
der Schnittstelle bezogen hatten. Eine Uberpriifung, ob es notwendig ist, wurde nicht
vorgenommen, diese Route bedeutet kein Nachteil.

Im Block “down” wird das VPN abgeschaltet und aufgeraumt.

3.9) Endpunkt uber IPv4 oder IPv6 - Full VPN steuern

error() {

}

echo Syntax: $(basename $0) "[-f] [-6] up|down"

V6=false
FULL=false

CMD=

while [[$# -gt 0 1]

do

done

case $1 in

-6) Vé=true;;

-T) FULL=true;;
up) CMD=$1;;
down) CMD=$1;;

*) error; exit 1;
esac

shift 1

Mit dieser Code kdnnten Aufruf Optionen zur Steuerung unseren Script ausgewertet werden.
Es wurde hier nicht implementiert.

3.10) Erganzungen fur IPv6 Endpunkt

source /etc/wireguard/tun@.var
KEY=$(sed -n -e '/PublicKey/p' $CNF | tr -d ' ' | sed 's/PublicKey=//")

wg setconf $WG $CNF

case $V6 in
true) wg set $WG peer "$KEY" endpoint "[$EP6]:$PORT";;
esac

Die Variable PORT haben wir in der Datei /etc/wireguard/tunO.var definiert, ebenso EP4 und
EP6 (Tunnel Endpunkt).

3.11) IPv6 des Endpunktes aus eine URL entnehmen

EP6=$(host $URL | grep ':' | awk '{print $NF}")

Alternativ

Wireguard

Seite 6 von 17

EP6=$(nslookup $URL | grep Address: |\
grep -v '#' | awk ' { print $NF}'| grep ':")

Alternativ

EP6=$(dig -q $URL -t AAAA | egrep -v ';|7$' |\
awk '{print $NF}"')

Wenn ein DynDNS angewendet wird kann die Adresse des Endpunktes ermittelt werden, dies
kann von Vorteil sein, ein VPS ist nicht unbedingt notwendig.

Die URL, beispielsweise wireguard.example.org, muss in unsere Script Konfigurationsdatei
zugewiesen sein.

3.12) Full VPN

Ein Full-VPN Verbindung bedeutet, dass alle Kommunikationen mit der weiten
Welt ausschliel3lich Gber der VPN-Verbindung laufen.

3.13) Sicherstellen, dass das VPN Tunnel der richtige Weg
nimmt

Im Full-VPN Betrieb muss eine weitere Route eingestellt werden, entsprechend der gesetzte
Routen (unseren Script und auch wg-quick) werden alle Paketen uber der Wireguard
Schnittstelle geleitet.

Wir missen dementsprechend die Route zum Endpunkt explizit setzen, damit der Verkehr
zum Endpunkt den Weg Uber der eigentlichen Schnittstelle nimmt.

source /etc/wireguard/tun@.var

AEP4=$(wg | sed -n 's/.*endpoint: \([~[].*\):.*/\1/p")
AEP6=%$(wg | sed -n 's/.*endpoint: \[\(.*:.*:.*\)]1.*/\1/p")

GW=$(ip route get 1.1.1.1 | awk '{print $3;exit}")
DEV=$(ip route get 1.1.1.1 | awk '{print $5;exit}"')
LL=$(ip -6 route | grep default | awk '{print $3}')

ip add address $IP6/64 dev $WG metric 0O
ip add address default dev $WG metric 0O

if [[u$AEP4u != nn]]; then
ip route add $AEP4/32 via $GW dev $DEV
fi
if [["$AEP6" !'= "" 1]; then
ip -6 route add $AEP6/128 via $LL dev $DEV
fi

Im Code, es kdnnte ein getrennten Script sein, wird die aktuellen Tunnel Endpunkt Adresse
ermittelt. Hier wird von einer Konfigurierung mit IP-Adressen ausgegangen.

In der Zeile 4 bzw, 5 wird die Adresse des aktuellen Endpunktes ermittelt. Eine der beiden
Variable wird mit einer IP-Adresse gesetzt, die andere Variable ist leer.

Wireguard Seite 7 von 17

Sollte dennoch eine URL als Endpunkt verwendet worden sein, kann die Adresse wie unter
IPv6 des Endpunktes aus eine URL entnehmen beschrieben ermittelt werden.

Da wir noch nicht das Full-VPN Betrieb eingestellt haben, kdnnen die notwendigen
Informationen zum Setzen der neuen Routen in Zeilen 7 bis 8 geholt werden.

AnschlieBend wird eine spezifische Route zum Endpunkt gesetzt, damit ist sichergestellt,
dass unsere VPN-Verbindung immer den richtigen Weg nimmt.

4) Erweiterten Beispiel

Namenskonvention

* GUI: INTERFACE_NAME-gui.sh

* SCRIPT: INTERFACE_NAME sh

* CONFIGURATION: INTERFACE_NAME.conf
* VARIABLEN: INTERFACE_NAME.var

* KONFIG: INTERFACE_NAME.conf

* DEV: INTERFACE_NAME

Die Namensgebung der Scripten geben sind auf der Name der Tunnel-Schnittstelle
abgestimmt. Damit kdnnen wir verschiedene VPN-Tunnel einfach verwalten.

4.1) Erweiterten Beispiel

Beispiel fiir Dateien

Falls wir 2 mdégliche Tunnel verwenden wollen (nicht gleichzeitig), den einen zu Anna und den
anderen zu Bernd, hatten wir nachstehenden Dateien.

/etc/wireguard/anna.conf
/etc/wireguard/anna.var
/usr/local/bin/anna.sh
/usr/local/bin/anna-gui.sh

/etc/wireguard/bernd.conf
/etc/wireguard/bernd.var
/usr/local/bin/bernd.sh
/usr/local/bin/bernd-gui.sh

4.2) /etc/wireguard/anna.conf

[Interface] # client
PrivateKey = mOLMgQ3XujHfR+I715Cbem6kRB77njYBoVz812mR5Xk=

[Peer] # Server

PublicKey = wcnpg2hRI1Pzd1VfSLndglP4v8gBVAb8P+WOMrkXoCY=
AllowedIPs = 10.18.1.32/32, 0.0.0.0/0, ::/0
PersistentKeepAlive = 25

Wireguard Seite 8 von 17

4.3) /etc/wireguard/anna.var

N=2

IP4=10.18.1.%N
IP6=fd0Ol:cafe::$N
DNS=192.168.178.1
DOMAIN="fritz.box 178.168.192.in-addr-arpa"
MTU=1420
IPR=192.168.178.0/24
EP4=192.0.2.223
EP6=2001:db8:dead:beef::1
URL=

PORT=51820

4.4) /etc/wireguard/bernd.var

N=6

IP4=172.17.1.$N
IP6=fdab:affe::$N
DNS=172.17.1.1
DOMAIN="dslrouter 1.168.192.in-addr-arpa"
MTU=1420
IPR=192.168.1.0/24

EP4=

EP6=
URL=wireguard.example.org
PORT=51820

4.5) /usr/local/bin/wg-anna.sh

Das Script sorgt daflir, dass das gewlnschten Tunnel aufgebaut wird, der Name der
Konfigurationsdateien und der Schnittstellen-Name werden aus der Name des Scripts
entnommen.

Die einzelnen Phasen des Aktivierens oder Stoppens sind in kleine Funktionen unterteilt,
damit ist der Hauptcode lesbarer.

Wireguard Seite 9 von 17

#!/bin/sh
error() {
echo Syntax: $(basename $0) "[-f] [-6] [-c conf] up|down"
}
V6=false
FULL=false
CMD=
CONF=/etc/wireguard/$(basename $0 .sh)

while [[$# -gt 0 1]
do
case $1 in
-6) Vb6=true;;
-f) FULL=true;;
-c) CONF=$2; shift 1;;
up) CMD=$1;;
down) CMD=$1;;
*) echo Wrong parameter $1;
error Parameter $1; exit 1;
esac
shift 1
done

source ${CONF}.var
CNF=${CONF}.conf
WG=$ (basename $CONF)

addFullVPN() {
if [["$FULL" == true 11; then
ip add add $IP6/0 dev $WG metric 10
ip route add $EP6 via $LL dev $DEV
ip route add default via $IP4 dev $WG
fi
}

delFullVPN() {
if [["$EP6" '= "" 11; then
ip route del $EP6 via $LL dev $DEV
fi
}

getDevViaScr() {
VIA=$(ip route get 1.1.1.1 | awk '{print $3;exit}"')
DEV=$(ip route get 1.1.1.1 | awk '{print $5;exit}")
SRC="ip route get 1.1.1.1 | awk '{print $7;exit}'"
LL=$(ip -6 route | grep default | awk '{print $3}"')

}
getEP() {
if [["$URL" != "" 11; then
EP4=$(host $URL | grep -v ':' | awk '{print $NF}"')
EP6=$(host $URL | grep ':' | awk '{print $NF}')
fi
}

Wireguard Seite 10 von 17

addDNS () {
echo nameserver $DNS | resolvconf -a $WG -m 0 -x
resolvectl default-route $DEV false
resolvectl domain $WG $DOMAIN
resolvectl default-route $WG
}

case $CMD in
up)
getDevViaScr
getEP
ip link add dev $WG type wireguard
wg setconf $WG $CNF
ip link set mtu $MTU up dev $WG

KEY=$(sed -n -e '/PublicKey/p' $CNF | tr -d ' ' | sed 's/PublicKey=//")
if [["$V6" == true 11; then

wg set $WG peer "$KEY" endpoint "[$EP6]:$PORT"
else

wg set $WG peer "$KEY" endpoint "$EP4:$PORT"
fi
ip address add $IP4/24 dev $WG
ip route add $IPR via $IP4 dev $WG
ip route add $EP4 via $VIA dev $DEV metric 3
addDNS
addFullVPN;
down)
ip link del dev $WG
getDevViaScr
EP4=$(ip route show | grep 'metric 3' | awk '{print $1}')
if [["$EP4"]1]; then
ip route del $EP4 via $VIA dev $DEV
fi
resolvectl default-route $DEV true
delFullVPN

esac

Wireguard Seite 11 von 17

4.6) GUI

#!/bin/bash
SCRIPTPATH=~/bin
#(C=-c
#P="~/wireguard/wg-client"
TUN=$ (basename $0 -gui.sh
if ip add show $DEV
TEXT=Stop; CMD="down"
else
TEXT=Start; CMD="up"
ENTRY1="'--field='"'Ipv6 Endpunkt'':CHK'; ENTRY2='--field=''Full VPN'':CHK'
fi
IN=$(yad --title Wireguard --no-escape \
--text="$TEXT $TUN" --image="dialog-password" \
--form --field="Passwort":H "$ENTRY1l" "$ENTRY2")
if [[$? -eq 0 1]; then

PwD=$(echo $IN | awk -F "|' "{print $1}")
X=$(echo $IN | awk -F '|" "{print $2}')
if [["$X" == TRUE 11; then

P1l=-6
fi
X=$(echo $IN | awk -F '|" "{print $3}")
if [["$X" == TRUE 11; then

P1=-f
fi
sudo -k -S $SCRIPTPATH/$DEV.sh $CMD $C $P $P1 $P2<<!

$PASS

|
fi

Wenn man nicht mit Kommandozeilen hantieren will, is es mdglich eine kleine graphische
Oberflache zu verwenden. Verwendet wird hier yad, eine bessere Alternative zu Zenity. Yad
ist gegebenenfalls Uber das Paket-Managementsystem der jeweiligen Distribution zu
installieren.

In Zeile 2 kann der Pfad zum Haupt-Script angegeben, wenn das Script sich in ein Verzeichnis
wie /usr/local/bin befindet, kann die Zeile ,,SCRIPTPATH=" lauten.

Zeile 3 und 4 sind von Interesse, wenn sich die Konfigurationsdateien sich nicht unter /etc/
wireguard befinden.

Die Maske wird abhangig, vom Vorhandensein der Tunnel Schnittstelle, (Prafung in Zeile 6)
vorgenommen.

Zeile 15 Uberpruft, ob die OK Schaltflache betatigt wurde, wenn ja wird das Script weiter
ausgeflhrt, sonst impliziert beendet.

Zeilen 25 bis 27 rufen mittels sudo unseren Hauptscript auf. Das Passwort wird Uber eine
,here Dokument” eingelesen (<<! bis /).

Wireguard Seite 12 von 17

4.7) Start/Stop GUI

Start Maske

5) Andere Plattformen

Das Verhalten und Eigenheiten der anderen Plattformen sollte auch kontrolliert
werden.

5.1) Smartphone

Bei Smartphone sieht die Welt anders aus!

Scripting ist schwieriger, daflr kann definiert werden welche Applikationen Uber der VPN-
Tunnel laufen. Wenn es nur um die Telefonie geht, ist es von Vorteil statische Adressen zu
haben, die Wahl IPv4/IPv6 kann mittels 2 getrennte VPN Konfigurationsdateien erfolgen.

5.2) Windows

Ist es nicht ein Virus?

Die Frage kann eindeutig mit ja beantwortet werden. Durch illegale Vorgehensweise wurden
Hersteller von PC/Notebook gezwungen exklusiv DOS und spater Windows XX zu liefern. Der
Kauf einen Rechner ohne Produkte von Microsoft stellt sich als extrem schwierig.

[Interface] # windows Site Zugriff
PrivateKey = K...=

Address = 10.18.1.10/32

DNS = 192.168.178.2, fritz.box

[Peer] # Server

PublicKey = b...=
AllowedIPs = 10.18.1.0/24
EndPoint = 192.0.2.1:51820

PersistentKeepAlive = 25

Wireguard Seite 13 von 17

[Interfacel # windows FULL-VPN

PrivateKey = K...=

Address = 10.18.1.10/32, fd0l:cafe::10/128
DNS = 192.168.178.2, fritz.box

[Peer] # Server

PublicKey = b...=
AllowedIPs = 0.0.0.0/0, ::/0
EndPoint = 192.0.2.1:51820

PersistentKeepAlive = 25

Unterschiedlich sind nur der Zuweisung fur AllowedIPs.
Im ersten Beispiel wird nur ein Adressenbereich, in dem Fall mit einer /24 Maske verwendet.
In der Zweite wird alles durchgelassen.

6) Server

6.1) Server

Auf unserer Server ist vom Beginn an IPv4 und IPv6 sowie das Full-VPN Betrieb zu
bericksichtigen.

6.2) Server Konfigurationsdatei

[Interfacel
PrivateKey = ¢ =
ListenPort
[Peer]
PublicKey
AllowedIPs
[Peer]

Il
ul
=
o0 -
N -
o -

V...=
10.18.1.2/32, fdO0l:cafe::2/128, 0.0.0.0/0, ::/0

6.3) Server Script Konfiguration

CNF=/etc/wireguard/wg-server.var
WG=tuno

MTU=1420

IP4=10.18.1.1

IP6=fd0Ol:cafe::1
IPR4=192.168.178.0/24

0IF=ens192

In den ersten Zeilen sind Werte, die direkt Wireguard betreffen, enthalten.
IPR4 steht fur die Route unser Heim-Netz.

OIF bezeichnet die Netzwerkschnittstelle zur weiten Welt unseren Server.

Wireguard Seite 14 von 17

6.4) Server Start Script

source /etc/wireguard/wg-server.var
case $1 in
start|up)
ip link add dev $WG type wireguard
wg setconf $WG $CNF
ip link set mtu $MTU up dev $WG
ip address add $IP6/64 dev $WG
ip address add $IP4/24 dev $WG
ip route add $IPR4/24 via $IP4 dev $WG
ipset create LAN nethash
ipset add LAN $IPR4
ipset add LAN $IP4/24
iptables -A FORWARD -m set ! --match-set LAN src -j ACCEPT
iptables -A INPUT -m set --match-set LAN src -j ACCEPT
iptables -t nat -A POSTROUTING -o $0IF -j MASQUERADE
ip6tables -A FORWARD -i $WG -j ACCEPT
ip6tables -t nat -A POSTROUTING -o $0IF -j MASQUERADE

stop|down)
ip link del dev $WG
ip6tables -D FORWARD -i $WG -j ACCEPT
ip6tables -t nat -D POSTROUTING -o $0IF -j MASQUERADE
iptables -t nat -A POSTROUTING -o $0IF -j MASQUERADE
iptables -D INPUT -m set --match-set LAN src -j ACCEPT
iptables -D FORWARD -m set ! --match-set LAN src -j ACCEPT
ipset destroy LAN

esac
Die Zeilen 5 bis 9 entsprechen die ubliche Vorgehensweise beim Aufsetzen des Tunnels.
Zeile 10 stellt sicher, dass Adressen zum Heim-LAN Uber der VPN-Tunnel geleitet werden.

Ab Zeile 11 verwenden wir das Kommando ipset, das Paket muss installiert werden. Es ware
moglich gewesen etwas neuer zu verwenden, die Unterstutzung bei Debian basierte
Systeme ist nicht gegeben.

Mit ipset kdnnen einzelne Adressen oder Adressenbereiche definiert werden, damit reduziert
sich den Aufwand an iptables Regeln.

Zeile 14 und 15 stellen sicher, dass je nach Adressenbereich das Netzwerkverkehr “genatet
werden (14, 16) oder normal bearbeitet werden (15)

FUr IPv6 ist nicht besonderes vorgesehen, es betrifft das gesamten IPv6 Netzwerkverkehr der
“genatet” wird.

Wireguard Seite 15 von 17

6.5) Systemd Unit Datei

[Unit]

Description=WireGuard Tunnel
After=network-online.target nss-lookup.target
Wants=network-online.target nss-lookup.target

[Service]

Type=oneshot

RemainAfterExit=yes

ExecStart=/usr/local/bin/wgs.sh up
ExecStop=/usr/local/bin/wgs.sh down
Environment=WG ENDPOINT RESOLUTION RETRIES=infinity

[Install]
WantedBy=multi-user.target

7) CPE (Internet/WLAN Router)

Die meist verwendeten Router durften, die von AVM und Telekom sein.
Jede Router hat seine eigenen Regeln.

7.1) Fritz!Box

Damit “fremde Adresse” z.b. 10.2.3.4 weitergereicht werden mussen statische Routen im
Router gesetzt werden.

7.2) Speedport
Diese Gerate eignen sich scheinbar nicht fir anspruchsvolle Betrieb.

7.3) Dlink, TP-Link. Netgear, ...

Diese Gerate erlauben das Setzen von statische Routen, bei mancher nur fur IPv4. Mit IPv6
kann es problematisch werden.

Eine Losung ware beispielsweise Openwrt auf die Gerate zu installieren. Damit erhalt man
ein Router der sein Name verdient.

Falls solch ein Router an einer DSL Buchse angeschlossen werden soll, durfte der Zugang
zum Internet problematisch sein.

8) Testumgebung

* Virtuelle Privat Server (VPS, bei lonos) mit statische IPv4 und IPv6.

o als Wireguard Server, Konfiguration wie hier beschrieben.
* Raspberry Pl 4B.

o als Gateway.

NAS als DNS-Server flr Subnetze und “Forwarding” auf der DSL Router.
DSL Router Fritz!Box 7590.
* Freifunk Router.

o fir Windows Tests.

Wireguard Seite 16 von 17

* Windows 10 (unter VirtualBox) auf der Hauptrechner.
* Notebook (Hauptrechner) mit Fedora 35.
o Internet Anschluss Gber WLAN der Fritz!Box.
o Fir Windows Test Freifunk Router an der Ethernet Schnittstelle des Rechners.
m Ethernet Schnittstelle nicht verwaltet.
* Weitere Notebook (Fedora 35), wahlweise Uber WLAN mit dem Heim-Netz oder Freifunk
verbunden.

9) Test Ergebnisse
Vertrauen ist gut, Kontrolle ist besser.

9.1) Linux

Mit Linux kann alles auf ein Rechner laufen, die genaue Spezifizierung der Routen
I6st mdgliche Probleme.

9.2) Windows

* Windows lauft in einer Virtuelle Maschine (VirtualBox).

o 4 Konfigurationsdateien wurden verwendet.
m wg4: Nur IPv4, Endpunkt Gber IPv4
m wgb6: Nur IPv4, Endpunkt Gber IPv6
m wgf4: Full-VPN (IPv4/IPv6), Endpunkt IPv4
m wgf6: Full-VPN (IPv4/IPv6), Endpunkt IPv6

o Die Virtuelle Maschine hatte 2 Ethernet Schnittstelle
m die Erste im Heim-LAN
m die Zweite Uber FreiFunk

VPN zu Hause nach Hause Uber ein IPv6 Verbindung ist nicht die Ubliche Vorgehensweise,
Windows war, hier ein wenig Uberfordert, mal ging es mal nicht.

9.3) Smartphone

Da das Smartphone nur fir die Telefonie dienen soll, reicht der normale VPN-Betrieb aus, es
sind gegebenenfalls zwei Konfigurationen zu verwenden (IPv4 Endpunkt / IPv4 Endpunkt).

9.4) MacOS

Mangel an passende Hardware konnte Tests nicht durchgefuhrt werden.
Es ist jedoch anzunehmen, dass es auf ein UNIXoid nicht viel anders ist, als mit
Linux.

10) Zugriff auf SMB shares

Im Dateimanager werden keinen Shares angezeigt

Mit Eingabe vom smb://nas/home (Linux) oder \\nas\home (Windows) lasst sich der Zugriff
erreichen. Damit ist ein Layer-3 Tunnel, wie von Wireguard verwendet, nicht wirklich ein
Nachteil.

Wireguard Seite 17 von 17

	Wireguard
	VPN Betriebs-Modus
	Problematik

	Routing unter Linux
	Routing und Spezialität
	Verhalten bei IPv4 und IPv6 im Full-VPN Modus - Konfiguration
	Route auf der Client

	Client
	Wireguard Tunnel erzeugen
	wg starten
	Beispiel einer Konfigurationsdatei
	Tunnel einschalten, IP Adresse und Route Setzen
	Route zum Heim LAN setzen
	DNS konfigurieren
	Client Script Konfigurationsdatei
	Client Script
	Endpunkt über IPv4 oder IPv6 - Full VPN steuern
	Ergänzungen für IPv6 Endpunkt
	IPv6 des Endpunktes aus eine URL entnehmen
	Full VPN
	Sicherstellen, dass das VPN Tunnel der richtige Weg nimmt

	Erweiterten Beispiel
	Erweiterten Beispiel
	/etc/wireguard/anna.conf
	/etc/wireguard/anna.var
	/etc/wireguard/bernd.var
	/usr/local/bin/wg-anna.sh
	GUI
	Start/Stop GUI

	Andere Plattformen
	Smartphone
	Windows

	Server
	Server
	Server Konfigurationsdatei
	Server Script Konfiguration
	Server Start Script
	Systemd Unit Datei

	CPE (Internet/WLAN Router)
	Fritz!Box
	Speedport
	Dlink, TP-Link. Netgear, …

	Testumgebung
	Test Ergebnisse
	Linux
	Windows
	Smartphone
	MacOS

	Zugriff auf SMB shares

