
Wireguard

Ein  VPN mit  Wireguard  werden  oftmals  unter  Zuhilfenahme  von  wg-quick

aufgebaut, die Verwendung eigene Scripts kann dennoch sinnvoller sein.

1) VPN Betriebs-Modus

Ein VPN kann sowohl als VPN wie als Full-VPN konfiguriert werden.

VPN bedeutet, dass nur der Netzverkehr zur Gegenstelle oder im Netz der Gegenstelle

über den Tunnel läuft.

Full-VPN bedeutet, dass den gesamten Netzwerk-Verkehr durch den Tunnel geleitet

wird.

1.1) Problematik

Die Betriebsmodus (VPN oder Full-VPN) bedürfen getrennte Konfigurationsdateien.

Full-VPN geht nicht ganz wie erwünscht. 

Falls die IPv4-Adressen des Heim-LANs mit de des Gast-Netzes kollidieren und die

Verbindung zum VPN über IPv4 geschieht, kann es zu Störungen kommen.

Die von wg-quick eingefügte Routen sorgen bestimmt, dass die Daten vom

Tunnel nicht zum eigentliche Empfänger geleitet werden.

2) Routing unter Linux

Neuere  Linux  Distributionen  verwenden  das  NetworkManager  um IP-Adressen

und Route festzulegen (auf ein Raspberry wird zurzeit dhcpcd verwendet).

Ein  saubere  Routing  setz  eine  Bevorzugung der  eine  oder  andere  Netzwerk-Schnittstelle

voraus.

Das Zauberwort heißt metric:

Der  Eintrag  metric  100 bei  der  Schnittstelle  eth0  hat  ein  geringerer  Wert  als  die  der

Schnittstelle  wlan0  und  wird  bevorzugt.  Eine  Funkverbindung  fügt  Verzögerungen,  diese

bewirken  sich  negativ  auf  der  Übertragungsrate,  deswegen wird  eine  höhere  metric der

Route über das Gerät wlan0, hier, vom NetworkManager zugewiesen.

In der 5. Zeile sehen wir ein Eintrag ohne metric, es ist gleichbedeutend mit metric 0. Mit

das Kommando route ist es ersichtlich

• 

• 

• 

• 

◦ 

◦ 

$ ip route show1

...2

default via 10.0.0.1 dev eth0 proto dhcp metric 6003

10.0.0.0/24 dev eth0  ... metric 1004

10.0.0.0/24 dev wlan0 ... metric 6005

10.0.0.0/24 dev wg0   ...6

...7

Wireguard Seite 1 von 17



Netzwerkzugriffe auf beispielsweise 10.0.0.2 würden, hier der Weg über wg0 nehmen.

Schlimmer ist, dass der Zugriff zur Adresse unseren VPN-Endpunkt nicht der Weg über eth0

nehmen kann! (FUll-VPN Betrieb).

2.1) Routing und Spezialität

In  diesem  Fall  ist  die  Route  zu  10.0.0.1  über  die  Netzwerk-Schnittstelle  wlan0  genauer

spezifiziert und wird als ersten beachtet.

Netzwerk Pakete die an Adressen im Bereich 10.1.1.0/24 gerichtet werden nehmen den Weg

über wlan0. 10.1.1.0/24 ist spezifischer als 0.0.0.0/0 (default).

2.2) Verhalten bei IPv4 und IPv6 im Full-VPN Modus -

Konfiguration

Zeile 3 definiert die Adressen der Wireguard Netzwerkschnittstelle.

Zeile 4 sorgt dafür, dass der DNS-Server (in dem Fall eine Fritz!Box) im Heim-LAN immer

konsultiert wird.

Die  Zeile  Table  =  auto ist  hier  überflüssig,  wenn  es  auf  off gestellt  wird,  wird  keine

zusätzliche Routingtabelle erstellt

Zeile 10 sorgt dafür, dass auf der Client Routen entsprechend gesetzt werden.

0.0.0.0/0 und ::/0 stellen sicher (oder sollten es bei IPv6), dass der Verkehr zur Wireguard

Netzwerkschnittstelle geleitet werden.

$ route1

Kernel IP Routentabelle2

Ziel          Router        Genmask         Flags Metric Ref  Use Iface3

...4

default       10.0.0.1      255.255.255.255 U     100    0      0 eth05

10.0.0.0      0.0.0.0       255.255.255.0   U     100    0      0 eth06

10.0.0.0      0.0.0.0       255.255.255.0   U     600    0      0 wlan07

10.0.0.0      0.0.0.0       255.255.255.0   U     0      0      0 wg08

$ ip route show1

default via 10.0.0.1 dev eth0 proto dhcp2

10.1.1.0/24 via 10.1.1.1 dev wlan03

10.0.0.1/32 via 10.1.1.1 dev wlan04

[Interface] # client1

PrivateKey =  W...=2

Address = 10.18.1.2/32, fd01:cafe::2/1283

DNS = 192.168.178.1 fritz.box 178.168.192.in-addr.arpa4

MTU=14205

Table = auto6

7

[Peer] # Server8

PublicKey  =  7...=9

AllowedIPs = 198.18.1.0/24, 192.168.178.0/24, fd01:cafe::/64, 0.0.0.0/0, ::/010

EndPoint   = 192.0.2.1211

Wireguard Seite 2 von 17



2.3) Route auf der Client

So ist nicht ersichtlich dass die default Route durch eine andere ergänzt wurde.

Hier offenbart was geschieht. Eine Routing Tabelle mit ID 51820 wurde angelegt, dort steht

eine default Route, die höherprior ist als die in Zeile 3.

3) Client

Wer lesen kann ist im Vorteil.

In dem Fall werden Manual Seiten und ein wenig Scripts.

3.1) Wireguard Tunnel erzeugen

wg das Verwaltung Programm (Kommunikation zur Wireguard) kann erst dann aufgerufen

werden, wenn eine passenden Schnittstelle vorhanden ist.

3.2) wg starten

Über der Konfigurationsdatei wg-client.conf wird der Kernel parametriert.

3.3) Beispiel einer Konfigurationsdatei

Der Rest kann über Script konfiguriert werden. Die Zuweisung EndPoint = 192.0.2.21:51820

könnte auch in unseren Script statt finden.

$ ip route1

default via 10.0.0.1 dev clan0 proto dhcp metric 6002

10.0.0.0/24 dev tun0 scope link3

10.0.0.0/24 dev wlan0 proto kernel scope link src 10.0.0.3 metric 6004

10.18.1.0/24 dev tun0 scope link5

ip -4 route show table all1

default dev tun0 table 51820 scope link2

default via 10.0.0.1 dev wlan0 proto dhcp metric 6003

10.0.0.0/24 dev tun0 scope link4

10.0.0.0/24 dev tun0 proto kernel scope link src 10.0.0.3 metric 6005

10.18.1.0/24 dev test scope link6

...7

ip tunnel add dev tun0 type wireguard1

wg up tun0 wg-client.conf1

[Interface] # mobile Gerät1

PrivateKey =  W...=2

3

[Peer] # Server4

PublicKey  =  7...=5

AllowedIPs = 0.0.0.0/0, ::/06

EndPoint   = 192.0.2.21:518207

PersistentKeepAlive = 258

Wireguard Seite 3 von 17



3.4) Tunnel einschalten, IP Adresse und Route Setzen

In Zeile 1 wird Die Schnittstelle parametriert und hochgefahren.

mtu 1480 gibt an wie groß die einzelnen Netzwerkpakete sein dürfen. Wireguard benötigt

selbst Platz in jedes Paket, dies vermindert die zulässige “mtu”.

Die 2. Zeile liegt die IPv4 Adresse der Schnittstelle und auch eine Route.

/24 besagt, dass Pakete zum Ziel 10.0.0.0 bis 10.0.0.255 über tun0 geleitet werden.

3.5) Route zum Heim LAN setzen

Rechner in unseren Heim-LAN haben alle eine Adresse im Bereich 192.168.178.0/24.  Wir

können hiermit jedes Gerät gezielt ansprechen.

Wenn die  Gastgeberin  ebenfalls  eine  Fritz!Box  betreibt,  gibt  es  Kollisionen.  Später  mehr

dazu.

3.6) DNS konfigurieren

DNS-Anfrage werden vorzugsweise über tun0 gesendet, damit können wir die Systeme im

Heim-LAN per Name ansprechen. die entsprechenden DNS Anfragen werden von unseren

eigenen Nameserver bedient.

Da wir über WIFI oder per Kabel mit das Netz der Gastgeberin verbunden sein können, wird

in Zeile 2 über welche Schnittstelle eine öffentliche Adresse erreicht wird. Danach werden die

Anfragen für die Domäne Fritz!Box und für unseren heimischen IP-Bereich den Weg über

unseren Tunnel verwiesen (Zeile 4).

Die Anweisungen in Zeile 2 und 3 können schlecht mit wg-quick implementiert werden.

ip link set mtu 1480 up dev tun01

ip address add 10.0.0.2/24 dev tun02

ip route add 192.168.178.0/24 via 10.0.0.2 dev tun01

echo nameserver 192.168.178.1 | resolvconf -a tun0 -m 0 -x1

DEV=$(ip route get 1.1.1.1 | awk '{print $5;exit}')2

resolvectl default-route $DEV false3

resolvectl domain tun0 friz.box 178.168.192.in-addr.arpa4

Wireguard Seite 4 von 17



3.7) Client Script Konfigurationsdatei

Falls mehrere Systeme im VPN eingebunden werden, reich es aus die Variable N zu setzen.

Die übrige Variable können wir später im Startscript verwenden.

3.8) Client Script

In  Zeile  3  sorgt  Funktion  getDevVia(),  dass  wir  erfahren  wie  die  Pakete  ins  Netzwerk

gesendet werden (Aufruf Zeile 9).

WG=tun01

CNF=/etc/wireguard/tun0.conf2

N=23

IP4=10.18.1.$N4

IP6=fd01:cafe::$N5

DNS=192.168.178.16

DOMAIN="fritz.box 178.168.192.in-addr-arpa"7

MTU=14208

IPR=192.168.178.0/249

EP4=192.0.2.2210

EP6=2001:db8::12311

URL=12

PORT=5182013

#!/bin/sh1

source /etc/wireguard/tun0.var2

getDevViaDrt() {3

    VIA=$(ip route get 1.1.1.1 | awk '{print $3;exit}')4

    DEV=$(ip route get 1.1.1.1 | awk '{print $5;exit}')5

    DRT=$(ip route | grep 'default' | awk '{print $1;exit}')6

}7

case $1 in8

up)9

    getDevViaDrt10

    ip link add dev $WG type wireguard11

    wg setconf $WG $CNF12

    ip link set mtu $MTU up dev $WG13

    ip address add $IP4/24 dev $WG14

    ip route add $IPRN via $IP4 dev $WG15

    ip route add $EP4 via $VIA dev $DEV16

    echo nameserver $DNS | resolvconf -a $WG -m 0 -x17

    resolvectl  default-route $DEV false18

    resolvectl domain $WG $DOMAIN19

    resolvectl default-route $WG20

    ;;21

down)22

    ip link del dev $WG23

    getDevViaDrt24

    ip route del $EP4 via $VIA dev $DEV25

    resolvectl default-route $DEV true26

    ;;27

esac28

Wireguard Seite 5 von 17



EP4 ist die IPv4 Adresse vom Tunnel Endpunkt.  Ws muss sichergestellt  werden, dass der

Netzwerkverkehr zum Endpunkt nicht fehlgeleitet wird. Dies erfolgt in Zeile 16.

Anschließend wir das DNS konfiguriert

Zeile 24 entfernt die VPN Schnittstelle und auch vorhergehende Anweisungen, die sich auf

der  Schnittstelle  bezogen  hatten.  Eine  Überprüfung,  ob  es  notwendig  ist,  wurde  nicht

vorgenommen, diese Route bedeutet kein Nachteil.

Im Block “down” wird das VPN abgeschaltet und aufgeräumt.

3.9) Endpunkt über IPv4 oder IPv6 - Full VPN steuern

Mit dieser Code könnten Aufruf Optionen zur Steuerung unseren Script ausgewertet werden.

Es wurde hier nicht implementiert.

3.10) Ergänzungen für IPv6 Endpunkt

Die Variable PORT haben wir in der Datei /etc/wireguard/tun0.var definiert, ebenso EP4 und

EP6 (Tunnel Endpunkt).

3.11) IPv6 des Endpunktes aus eine URL entnehmen

Alternativ

#!/bin/bash1

error() {2

   echo Syntax: $(basename $0) "[-f] [-6] up|down"3

}4

V6=false5

FULL=false6

CMD=7

while [[ $# -gt 0 ]]8

do9

    case $1 in10

    -6) V6=true;;11

    -f) FULL=true;;12

    up)  CMD=$1;;13

    down) CMD=$1;;14

    *) error; exit 1;15

    esac16

    shift 117

done18

source /etc/wireguard/tun0.var1

KEY=$(sed -n -e '/PublicKey/p' $CNF | tr -d ' ' | sed 's/PublicKey=//')2

...3

    wg setconf $WG $CNF4

    case $V6 in5

    true) wg set $WG peer "$KEY" endpoint "[$EP6]:$PORT";;6

    esac7

...8

EP6=$(host $URL | grep ':' | awk '{print $NF}')1

Wireguard Seite 6 von 17



Alternativ

Wenn ein DynDNS angewendet wird kann die Adresse des Endpunktes ermittelt werden, dies

kann von Vorteil sein, ein VPS ist nicht unbedingt notwendig.

Die URL, beispielsweise wireguard.example.org, muss in unsere Script Konfigurationsdatei

zugewiesen sein.

3.12) Full VPN

Ein Full-VPN Verbindung bedeutet,  dass alle  Kommunikationen mit  der  weiten

Welt ausschließlich über der VPN-Verbindung laufen.

3.13) Sicherstellen, dass das VPN Tunnel der richtige Weg

nimmt

Im Full-VPN Betrieb muss eine weitere Route eingestellt werden, entsprechend der gesetzte

Routen  (unseren  Script  und  auch  wg-quick)  werden  alle  Paketen  über  der  Wireguard

Schnittstelle geleitet.

Wir müssen dementsprechend die Route zum Endpunkt explizit setzen, damit der Verkehr

zum Endpunkt den Weg über der eigentlichen Schnittstelle nimmt.

Im Code, es könnte ein getrennten Script sein, wird die aktuellen Tunnel Endpunkt Adresse

ermittelt. Hier wird von einer Konfigurierung mit IP-Adressen ausgegangen.

In der Zeile 4 bzw, 5 wird die Adresse des aktuellen Endpunktes ermittelt. Eine der beiden

Variable wird mit einer IP-Adresse gesetzt, die andere Variable ist leer.

EP6=$(nslookup $URL | grep Address: |\1

       grep -v '#' | awk ' { print $NF}'| grep ':')2

EP6=$(dig -q $URL  -t AAAA | egrep -v ';|^$' |\1

       awk '{print $NF}')2

source /etc/wireguard/tun0.var1

2

AEP4=$(wg | sed -n 's/.*endpoint: \([^[].*\):.*/\1/p')3

AEP6=$(wg | sed -n 's/.*endpoint: \[\(.*:.*:.*\)].*/\1/p')4

5

GW=$(ip route get 1.1.1.1 | awk '{print $3;exit}')6

DEV=$(ip route get 1.1.1.1 | awk '{print $5;exit}')7

LL=$(ip -6 route | grep default | awk '{print $3}')8

9

ip add address $IP6/64 dev $WG metric 010

ip add address default dev $WG metric 011

12

if [[ "$AEP4" != "" ]]; then13

    ip route add $AEP4/32 via $GW dev $DEV14

fi15

if [[ "$AEP6" != "" ]]; then16

    ip -6 route add $AEP6/128 via $LL dev $DEV17

fi18

Wireguard Seite 7 von 17



Sollte dennoch eine URL als Endpunkt verwendet worden sein, kann die Adresse wie unter

IPv6 des Endpunktes aus eine URL entnehmen beschrieben ermittelt werden.

Da  wir  noch  nicht  das  Full-VPN  Betrieb  eingestellt  haben,  können  die  notwendigen

Informationen zum Setzen der neuen Routen in Zeilen 7 bis 8 geholt werden.

Anschließend wird eine spezifische Route zum Endpunkt gesetzt,  damit  ist  sichergestellt,

dass unsere VPN-Verbindung immer den richtigen Weg nimmt.

4) Erweiterten Beispiel

Namenskonvention

GUI: INTERFACE_NAME-gui.sh

SCRIPT: INTERFACE_NAME.sh

CONFIGURATION: INTERFACE_NAME.conf

VARIABLEN: INTERFACE_NAME.var

KONFIG: INTERFACE_NAME.conf

DEV: INTERFACE_NAME

Die  Namensgebung  der  Scripten  geben  sind  auf  der  Name  der  Tunnel-Schnittstelle

abgestimmt. Damit können wir verschiedene VPN-Tunnel einfach verwalten.

4.1) Erweiterten Beispiel

Beispiel für Dateien

Falls wir 2 mögliche Tunnel verwenden wollen (nicht gleichzeitig), den einen zu Anna und den

anderen zu Bernd, hätten wir nachstehenden Dateien.

/etc/wireguard/anna.conf

/etc/wireguard/anna.var

/usr/local/bin/anna.sh

/usr/local/bin/anna-gui.sh

/etc/wireguard/bernd.conf

/etc/wireguard/bernd.var

/usr/local/bin/bernd.sh

/usr/local/bin/bernd-gui.sh

4.2) /etc/wireguard/anna.conf

• 

• 

• 

• 

• 

• 

[Interface] # client1

PrivateKey =  mOLMqQ3XujHfR+I7l5Cbem6kRB77njYBoVz8l2mR5Xk=2

3

[Peer] # Server4

PublicKey  =  wcnpq2hRI1Pzd1VfSLndg1P4v8qBVAb8P+W0MrkX0CY=5

AllowedIPs = 10.18.1.32/32, 0.0.0.0/0, ::/06

PersistentKeepAlive = 257

Wireguard Seite 8 von 17



4.3) /etc/wireguard/anna.var

4.4) /etc/wireguard/bernd.var

4.5) /usr/local/bin/wg-anna.sh

Das  Script  sorgt  dafür,  dass  das  gewünschten  Tunnel  aufgebaut  wird,  der  Name  der

Konfigurationsdateien  und  der  Schnittstellen-Name  werden  aus  der  Name  des  Scripts

entnommen.

Die einzelnen Phasen des Aktivierens oder Stoppens sind in kleine Funktionen unterteilt,

damit ist der Hauptcode lesbarer.

N=21

IP4=10.18.1.$N2

IP6=fd01:cafe::$N3

DNS=192.168.178.14

DOMAIN="fritz.box 178.168.192.in-addr-arpa"5

MTU=14206

IPR=192.168.178.0/247

EP4=192.0.2.2238

EP6=2001:db8:dead:beef::19

URL=10

PORT=5182011

N=61

IP4=172.17.1.$N2

IP6=fdab:affe::$N3

DNS=172.17.1.14

DOMAIN="dslrouter 1.168.192.in-addr-arpa"5

MTU=14206

IPR=192.168.1.0/247

EP4=8

EP6=9

URL=wireguard.example.org10

PORT=5182011

Wireguard Seite 9 von 17



#!/bin/sh1

error() {2

   echo Syntax: $(basename $0) "[-f] [-6] [-c conf] up|down"3

}4

V6=false5

FULL=false6

CMD=7

CONF=/etc/wireguard/$(basename $0 .sh)8

9

while [[ $# -gt 0 ]]10

do11

    case $1 in12

    -6) V6=true;;13

    -f) FULL=true;;14

    -c) CONF=$2; shift 1;;15

    up)  CMD=$1;;16

    down) CMD=$1;;17

    *) echo Wrong parameter $1;18

       error Parameter $1; exit 1;19

    esac20

    shift 121

done22

23

source ${CONF}.var24

CNF=${CONF}.conf25

WG=$(basename $CONF)26

27

addFullVPN() {28

   if [[ "$FULL" == true ]]; then29

        ip add add $IP6/0 dev $WG metric 1030

        ip route add $EP6 via $LL dev $DEV31

        ip route add default via $IP4 dev $WG32

    fi33

}34

35

delFullVPN() {36

    if [[ "$EP6" != "" ]]; then37

        ip route del $EP6 via $LL dev $DEV38

    fi39

}40

41

getDevViaScr() {42

    VIA=$(ip route get 1.1.1.1 | awk '{print $3;exit}')43

    DEV=$(ip route get 1.1.1.1 | awk '{print $5;exit}')44

    SRC=`ip route get 1.1.1.1 | awk '{print $7;exit}'`45

    LL=$(ip -6 route | grep default | awk '{print $3}')46

}47

48

getEP() {49

    if [[ "$URL" != "" ]]; then50

        EP4=$(host $URL | grep -v ':' | awk '{print $NF}')51

        EP6=$(host $URL | grep ':' | awk '{print $NF}')52

    fi53

}54

Wireguard Seite 10 von 17



55

addDNS() {56

    echo nameserver $DNS | resolvconf -a $WG -m 0 -x57

    resolvectl  default-route $DEV false58

    resolvectl domain $WG $DOMAIN59

    resolvectl default-route $WG60

}61

62

case $CMD in63

up)64

    getDevViaScr65

    getEP66

    ip link add dev $WG type wireguard67

    wg setconf $WG $CNF68

    ip link set mtu $MTU up dev $WG69

    KEY=$(sed -n -e '/PublicKey/p' $CNF | tr -d ' ' | sed 's/PublicKey=//')70

    if [[ "$V6" == true ]]; then71

        wg set $WG peer "$KEY" endpoint "[$EP6]:$PORT"72

    else73

        wg set $WG peer "$KEY" endpoint "$EP4:$PORT"74

    fi75

    ip address add $IP4/24 dev $WG76

    ip route add $IPR via $IP4 dev $WG77

    ip route add $EP4 via $VIA dev $DEV metric 378

    addDNS79

    addFullVPN;80

    ;;81

down)82

    ip link del dev $WG83

    getDevViaScr84

    EP4=$(ip route show | grep 'metric 3' | awk '{print $1}')85

    if [[ "$EP4" ]]; then86

         ip route del $EP4 via $VIA dev $DEV87

    fi88

    resolvectl default-route $DEV true89

    delFullVPN90

    ;;91

esac92

Wireguard Seite 11 von 17



4.6) GUI

Wenn man nicht mit Kommandozeilen hantieren will, is es möglich eine kleine graphische

Oberfläche zu verwenden. Verwendet wird hier yad, eine bessere Alternative zu Zenity. Yad

ist  gegebenenfalls  über  das  Paket-Managementsystem  der  jeweiligen  Distribution  zu

installieren.

In Zeile 2 kann der Pfad zum Haupt-Script angegeben, wenn das Script sich in ein Verzeichnis

wie /usr/local/bin befindet, kann die Zeile „SCRIPTPATH=” lauten.

Zeile 3 und 4 sind von Interesse, wenn sich die Konfigurationsdateien sich nicht unter /etc/

wireguard befinden.

Die Maske wird abhängig, vom Vorhandensein der Tunnel Schnittstelle, (Prüfung in Zeile 6)

vorgenommen.

Zeile 15 überprüft, ob die OK Schaltfläche betätigt wurde, wenn ja wird das Script weiter

ausgeführt, sonst impliziert beendet.

Zeilen 25 bis 27 rufen mittels sudo unseren Hauptscript auf. Das Passwort wird über eine

„here Dokument” eingelesen (<<! bis !).

#!/bin/bash1

SCRIPTPATH=~/bin2

#C=-c3

#P="~/wireguard/wg-client"4

TUN=$(basename $0 -gui.sh5

if ip add show $DEV6

  TEXT=Stop; CMD="down"7

else8

  TEXT=Start; CMD="up"9

  ENTRY1='--field=''Ipv6 Endpunkt'':CHK'; ENTRY2='--field=''Full VPN'':CHK'10

fi11

IN=$(yad --title Wireguard --no-escape \12

    --text="$TEXT $TUN" --image="dialog-password" \13

    --form  --field="Passwort":H "$ENTRY1" "$ENTRY2")14

if [[ $? -eq 0 ]]; then15

   PWD=$(echo $IN | awk -F '|' '{print $1}')16

   X=$(echo $IN | awk -F '|' '{print $2}')17

   if [[ "$X" == TRUE ]]; then18

      P1=-619

   fi20

   X=$(echo $IN | awk -F '|' '{print $3}')21

   if [[ "$X" == TRUE ]]; then22

      P1=-f23

   fi24

   sudo -k -S $SCRIPTPATH/$DEV.sh $CMD $C $P $P1 $P2<<!25

$PASS26

!27

fi28

Wireguard Seite 12 von 17



4.7) Start/Stop GUI

Start Maske

5) Andere Plattformen

Das Verhalten und Eigenheiten der anderen Plattformen sollte auch kontrolliert

werden.

5.1) Smartphone

Bei Smartphone sieht die Welt anders aus!

Scripting ist schwieriger, dafür kann definiert werden welche Applikationen über der VPN-

Tunnel laufen. Wenn es nur um die Telefonie geht, ist es von Vorteil statische Adressen zu

haben, die Wahl IPv4/IPv6 kann mittels 2 getrennte VPN Konfigurationsdateien erfolgen.

5.2) Windows

Ist es nicht ein Virus?

Die Frage kann eindeutig mit ja beantwortet werden. Durch illegale Vorgehensweise wurden

Hersteller von PC/Notebook gezwungen exklusiv DOS und später Windows XX zu liefern. Der

Kauf einen Rechner ohne Produkte von Microsoft stellt sich als extrem schwierig.

[Interface] # windows Site Zugriff1

PrivateKey =  K...=2

Address = 10.18.1.10/323

DNS = 192.168.178.2, fritz.box4

5

[Peer] # Server6

PublicKey  =  b...=7

AllowedIPs = 10.18.1.0/248

EndPoint   = 192.0.2.1:518209

PersistentKeepAlive = 2510

Wireguard Seite 13 von 17



Unterschiedlich sind nur der Zuweisung für AllowedIPs.

Im ersten Beispiel wird nur ein Adressenbereich, in dem Fall mit einer /24 Maske verwendet.

In der Zweite wird alles durchgelassen.

6) Server

6.1) Server

Auf unserer Server ist vom Beginn an IPv4 und IPv6 sowie das Full-VPN Betrieb zu

berücksichtigen.

6.2) Server Konfigurationsdatei

6.3) Server Script Konfiguration

In den ersten Zeilen sind Werte, die direkt Wireguard betreffen, enthalten.

IPR4 steht für die Route unser Heim-Netz.

OIF bezeichnet die Netzwerkschnittstelle zur weiten Welt unseren Server.

[Interface] # windows FULL-VPN1

PrivateKey =  K...=2

Address = 10.18.1.10/32, fd01:cafe::10/1283

DNS = 192.168.178.2, fritz.box4

5

[Peer] # Server6

PublicKey  =  b...=7

AllowedIPs = 0.0.0.0/0, ::/08

EndPoint   = 192.0.2.1:518209

PersistentKeepAlive = 2510

[Interface]1

PrivateKey =  c...=2

ListenPort = 518203

[Peer]4

PublicKey  = v...=5

AllowedIPs = 10.18.1.2/32, fd01:cafe::2/128, 0.0.0.0/0, ::/06

[Peer]7

...8

CNF=/etc/wireguard/wg-server.var1

WG=tun02

MTU=14203

IP4=10.18.1.14

IP6=fd01:cafe::15

IPR4=192.168.178.0/246

OIF=ens1927

Wireguard Seite 14 von 17



6.4) Server Start Script

Die Zeilen 5 bis 9 entsprechen die übliche Vorgehensweise beim Aufsetzen des Tunnels.

Zeile 10 stellt sicher, dass Adressen zum Heim-LAN über der VPN-Tunnel geleitet werden.

Ab Zeile 11 verwenden wir das Kommando ipset, das Paket muss installiert werden. Es wäre

möglich  gewesen  etwas  neuer  zu  verwenden,  die  Unterstützung  bei  Debian  basierte

Systeme ist nicht gegeben.

Mit ipset können einzelne Adressen oder Adressenbereiche definiert werden, damit reduziert

sich den Aufwand an iptables Regeln.

Zeile 14 und 15 stellen sicher, dass je nach Adressenbereich das Netzwerkverkehr “genatet

werden (14, 16) oder normal bearbeitet werden (15)

Für IPv6 ist nicht besonderes vorgesehen, es betrifft das gesamten IPv6 Netzwerkverkehr der

“genatet” wird.

#!/usr/bin/bash1

source /etc/wireguard/wg-server.var2

case $1 in3

start|up)4

    ip link add dev $WG type wireguard5

    wg setconf $WG $CNF6

    ip link set mtu $MTU up dev $WG7

    ip address add $IP6/64 dev $WG8

    ip address add $IP4/24 dev $WG9

    ip route add $IPR4/24 via $IP4 dev $WG10

    ipset create LAN nethash11

    ipset add LAN $IPR412

    ipset add LAN $IP4/2413

    iptables -A FORWARD -m set ! --match-set LAN src -j ACCEPT14

    iptables -A INPUT -m set --match-set LAN src -j ACCEPT15

    iptables -t nat -A POSTROUTING -o $OIF -j MASQUERADE16

    ip6tables -A FORWARD -i $WG -j ACCEPT17

    ip6tables -t nat -A POSTROUTING -o $OIF -j MASQUERADE18

    ;;19

stop|down)20

    ip link del dev $WG21

    ip6tables -D FORWARD -i $WG -j ACCEPT22

    ip6tables -t nat -D POSTROUTING -o $OIF -j MASQUERADE23

    iptables -t nat -A POSTROUTING -o $OIF -j MASQUERADE24

    iptables -D INPUT -m set --match-set LAN src -j ACCEPT25

    iptables -D FORWARD -m set ! --match-set LAN src -j ACCEPT26

    ipset destroy LAN27

    ;;28

esac29

Wireguard Seite 15 von 17



6.5) Systemd Unit Datei

7) CPE (Internet/WLAN Router)

Die meist verwendeten Router dürften, die von AVM und Telekom sein.

Jede Router hat seine eigenen Regeln.

7.1) Fritz!Box

Damit “fremde Adresse” z.b.  10.2.3.4 weitergereicht werden müssen statische Routen im

Router gesetzt werden.

7.2) Speedport

Diese Geräte eignen sich scheinbar nicht für anspruchsvolle Betrieb.

7.3) Dlink, TP-Link. Netgear, …

Diese Geräte erlauben das Setzen von statische Routen, bei mancher nur für IPv4. Mit IPv6

kann es problematisch werden.

Eine Lösung wäre beispielsweise Openwrt auf die Geräte zu installieren. Damit erhält man

ein Router der sein Name verdient.

Falls solch ein Router an einer DSL Buchse angeschlossen werden soll, dürfte der Zugang

zum Internet problematisch sein.

8) Testumgebung

Virtuelle Privat Server (VPS, bei Ionos) mit statische IPv4 und IPv6. 

als Wireguard Server, Konfiguration wie hier beschrieben.

Raspberry PI 4B. 

als Gateway.

NAS als DNS-Server für Subnetze und “Forwarding” auf der DSL Router.

DSL Router Fritz!Box 7590.

Freifunk Router. 

für Windows Tests.

[Unit]1

Description=WireGuard Tunnel2

After=network-online.target nss-lookup.target3

Wants=network-online.target nss-lookup.target4

5

[Service]6

Type=oneshot7

RemainAfterExit=yes8

ExecStart=/usr/local/bin/wgs.sh up9

ExecStop=/usr/local/bin/wgs.sh down10

Environment=WG_ENDPOINT_RESOLUTION_RETRIES=infinity11

12

[Install]13

WantedBy=multi-user.target14

• 

◦ 

• 

◦ 

• 

• 

• 

◦ 

Wireguard Seite 16 von 17



Windows 10 (unter VirtualBox) auf der Hauptrechner.

Notebook (Hauptrechner) mit Fedora 35. 

Internet Anschluss über WLAN der Fritz!Box.

Für Windows Test Freifunk Router an der Ethernet Schnittstelle des Rechners. 

Ethernet Schnittstelle nicht verwaltet.

Weitere Notebook (Fedora 35), wahlweise über WLAN mit dem Heim-Netz oder Freifunk

verbunden.

9) Test Ergebnisse

Vertrauen ist gut, Kontrolle ist besser.

9.1) Linux

Mit Linux kann alles auf ein Rechner laufen, die genaue Spezifizierung der Routen

löst mögliche Probleme.

9.2) Windows

Windows läuft in einer Virtuelle Maschine (VirtualBox). 

4 Konfigurationsdateien wurden verwendet. 

wg4: Nur IPv4, Endpunkt über IPv4

wg6: Nur IPv4, Endpunkt über IPv6

wgf4: Full-VPN (IPv4/IPv6), Endpunkt IPv4

wgf6: Full-VPN (IPv4/IPv6), Endpunkt IPv6

Die Virtuelle Maschine hatte 2 Ethernet Schnittstelle 

die Erste im Heim-LAN

die Zweite über FreiFunk

VPN zu Hause nach Hause über ein IPv6 Verbindung ist nicht die übliche Vorgehensweise,

Windows war, hier ein wenig überfordert, mal ging es mal nicht.

9.3) Smartphone

Da das Smartphone nur für die Telefonie dienen soll, reicht der normale VPN-Betrieb aus, es

sind gegebenenfalls zwei Konfigurationen zu verwenden (IPv4 Endpunkt / IPv4 Endpunkt).

9.4) MacOS

Mangel an passende Hardware konnte Tests nicht durchgeführt werden.

Es ist jedoch anzunehmen, dass es auf ein UNIXoid nicht viel anders ist, als mit

Linux.

10) Zugriff auf SMB shares

Im Dateimanager werden keinen Shares angezeigt

Mit Eingabe vom smb://nas/home (Linux) oder \\nas\home (Windows) lässt sich der Zugriff

erreichen.  Damit  ist  ein  Layer-3 Tunnel,  wie von Wireguard verwendet,  nicht  wirklich ein

Nachteil.

• 

• 

◦ 

◦ 

▪ 

• 

• 

◦ 

▪ 

▪ 

▪ 

▪ 

◦ 

▪ 

▪ 

Wireguard Seite 17 von 17


	Wireguard
	VPN Betriebs-Modus
	Problematik

	Routing unter Linux
	Routing und Spezialität
	Verhalten bei IPv4 und IPv6 im Full-VPN Modus - Konfiguration
	Route auf der Client

	Client
	Wireguard Tunnel erzeugen
	wg starten
	Beispiel einer Konfigurationsdatei
	Tunnel einschalten, IP Adresse und Route Setzen
	Route zum Heim LAN setzen
	DNS konfigurieren
	Client Script Konfigurationsdatei
	Client Script
	Endpunkt über IPv4 oder IPv6 - Full VPN steuern
	Ergänzungen für IPv6 Endpunkt
	IPv6 des Endpunktes aus eine URL entnehmen
	Full VPN
	Sicherstellen, dass das VPN Tunnel der richtige Weg nimmt

	Erweiterten Beispiel
	Erweiterten Beispiel
	/etc/wireguard/anna.conf
	/etc/wireguard/anna.var
	/etc/wireguard/bernd.var
	/usr/local/bin/wg-anna.sh
	GUI
	Start/Stop GUI

	Andere Plattformen
	Smartphone
	Windows

	Server
	Server
	Server Konfigurationsdatei
	Server Script Konfiguration
	Server Start Script
	Systemd Unit Datei

	CPE (Internet/WLAN Router)
	Fritz!Box
	Speedport
	Dlink, TP-Link. Netgear, …

	Testumgebung
	Test Ergebnisse
	Linux
	Windows
	Smartphone
	MacOS

	Zugriff auf SMB shares


